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The effects are investigated of including inertial terms, in both small- and large-
surface-tension limits, in a remodelling of the influential and fundamental problem
first formulated by Moffatt and Pukhnachov‡ in 1977: that of viscous thin-film free-
surface Stokes flow exterior to a circular cylinder rotating about its horizontal axis in
a vertical gravitational field.

An analysis of the non-dimensionalizations of previous related literature is made
and the precise manner in which different rescalings lead to the asymptotic promotion
or demotion of pure-inertial flux terms over gravitational-inertial terms is highlighted.
An asymptotic mass-conserving evolution equation for a perturbed-film thickness is
derived and solved using two-timescale asymptotics with a strained fast timescale. By
using an algebraic manipulator to automate the asymptotics to high orders in the
small expansion parameter of the ratio of the film thickness to the cylinder radius,
consistent a posteriori truncations are obtained.

Via two-timescale and numerical solutions of the evolution equation, new light is
shed on diverse effects of inertia in both small- and large-surface-tension limits, in
each of which a critical Reynolds number is discovered above which the thin-film
evolution equation has no steady-state solution due to the strength of the destabilizing
inertial centrifugal force. Extensions of the theory to the treatment of thicker films
are discussed.

1. Introduction
Almost a third of a century after its first consideration in Moffatt (1977) and

Pukhnachev (1977), the evolution of viscous thin-film free-surface two-dimensional
flow on the exterior of a rotating circular cylinder continues to stimulate interest
on diverse theoretical and computational fronts, not least because of its industrial
potential for modelling both coating and rimming flows, in which a thin film of
viscous liquid with a free surface evolves respectively on the exterior and the interior
of a circular cylinder rotating about its horizontal axis in a vertical gravitational field.
Accordingly, although a considerable literature has emerged on both variants of the
‘Moffatt–Pukhnachov’ problem (MPP), and despite the attention it has received to
date, the MPP continues to reveal new features at all levels, including the fundamental.

This paper concerns the new derivation of an explicit criterion, for the existence
of a stable thin film in the exterior MPP, in terms of the three physical parameters
describing the interplay between leading-order independent effects of gravity, surface

† Email address for correspondence: mark@maths.leeds.ac.uk
‡ The English transliteration Pukhnachev appears in only the original 1977 paper and reflects

neither the correct pronunciation of the name in its original Cyrillic form nor its spelling in
subsequent papers; it is used here only when citing the 1977 paper.
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tension and inertia, by finding time-dependent asymptotic solutions of a newly derived
inertial extension of the evolution equation of Pukhnachev (1977) for the height of
the thin film.

Hinch & Kelmanson (2003) use two-timescale asymptotics to analyse the exterior
MPP characterized by two non-dimensional parameters corresponding to gravity
γ = ρgh̄2/3ωμa, and surface tension α = σ h̄3/3ωμa4, where ω and a are respectively
the angular velocity and radius of the cylinder, and μ, ρ, σ and h̄ are respectively
the dynamic viscosity, density, surface tension and mean film thickness of the fluid,
and g is the gravitational acceleration. The low-harmonic analysis of Hinch &
Kelmanson (2003) applies to the parameter hierarchy γ 2 � α � γ � 1, and breaks
down when α =O(γ 2). In the small-α régime, the modified asymptotic analysis of
Hinch, Kelmanson & Metcalfe (2004) determines shock-like solutions by solving a
Kuramoto–Sivashinsky evolution equation for the leading-order term in a γ -expansion
of the film thickness. Hinch & Kelmanson (2003) theoretically confirm the numerical
discovery of Hansen & Kelmanson (1994) that steady-state profiles are relatively
insensitive to large variations in α, including those for which α � 1, i.e. beyond the
apparent validity of the above hierarchy.

The present paper extends the analysis of Hinch & Kelmanson (2003) by studying
both theoretically and numerically the effect of augmenting Pukhnachov’s equation by
inertial terms proportional to a third non-dimensional parameter, a scaled Reynolds
number R = (γρσ 3h̄13/81α3gμ4a13)1/2, which is thus fixed by the specification of γ

and α, and whose position in the above hierarchy is therefore determined by the
physical properties of a particular fluid.

Inertial corrections (to varying orders of accuracy) to the leading-order lubrication
approximation have been incorporated in previous studies of rimming flow in, e.g.,
Benjamin, Pritchard & Tavener (1993), Hosoi & Mahadevan (1999), Acrivos &
Jin (2004) and Benilov & O’Brien (2005). Noakes, King & Riley (2006) generalize
the evolution-equation derivation of previous studies via a reconsideration of both
exterior and interior MPPs using a systematic formal asymptotic approach, effectively
deriving benchmark evolution equations for the purposes of comparison. Specifically,
Noakes et al. (2006) incorporate inertial effects with emphasis on the modelling
of generalized and consistent rational approximations of which the above studies,
and this one, are specific limiting cases. Their formulation admits flexible velocity
scalings, different parameter régimes, and uses a multiple-timescale approach to derive
evolution equations for the leading-order components in a small-parameter expansion
of the film profile; solving these equations is explicitly proposed as future work, and
it is in this spirit that the present work is conducted, using mutually validating
theoretical and numerical techniques.

Through a multiple-timescale study of our evolution equation, we discover that
the interplay between leading-order gravity, surface tension and inertia gives rise
to a critical Reynolds number below which centrifugal effects are dominated by
surface tension, admitting a steady state, and above which centrifugal effects lead to
oscillating growing solutions. A similar discovery is made by Hocking & Davis (2002)
in an analysis of spreading drops, wherein a critical Reynolds number occurs below
which the rate of approach to the steady state is reduced by inertia, but above which
it becomes oscillatory; in the latter case, and in contrast to the present work, the
absence of periodic gravitational forcing still admits a steady state.

The present work adheres to a fixed velocity scaling, retaining terms consistently
by automating all calculations to high orders using the algebraic manipulator Maple,
so that all truncations are controlled; in this sense, all expansions are calculated
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to a far greater accuracy than can reasonably be presented herein. Since almost
all of the derivations and calculations in § § 2–5 require sophisticated non-trivial
implementations in Maple, technical details are occasionally reported in order to
convey both the intricacy and computational cost of the considerable quantity of
otherwise-hidden details. The remainder of the paper is structured as follows.

In § 2 an asymptotic mass-conserving evolution equation is derived, ab initio from
the Navier–Stokes equations and boundary conditions, that augments the exterior-
MPP Stokes-flow approximation of Pukhnachev (1977) with leading-order inertial
effects. Apparent discrepancies between this evolution equation and those of related
studies by Benjamin et al. (1993), Ashmore, Hosoi & Stone (2003) and Benilov &
O’Brien (2005) are analysed in detail and fully explained by noting that the relative
asymptotic ordering of what we classify as pure-inertial and gravitational-inertial
effects is critically dependent upon the non-dimensionalization used. Leading-order
gravitational, surface-tension and pure-inertial effects are respectively parameterized
by the above-mentioned γ , α and R, and our equation (which is for a perturbed
normalized film height, rather than the film height itself) is shown to be asymptotically
consistent with the benchmark generalized theory of Noakes et al. (2006).

In § 3 a two-timescale approach is used to solve the evolution equation derived in
§ 2 as a power series in γ , using a strained fast timescale and a slow-timescale
parameter γ 2 physically induced by the double action of gravity identified by
Hinch & Kelmanson (2003); straining the fast timescale simplifies calculations by
accommodating the drift element of the slow-timescale evolution equations at leading
order; on this note, an explicit formula in terms of γ , α and R for the leading-order
drift relative to the rotating cylinder is obtained. Since the introduction of inertia
substantially increases the level of algebraic manipulation required to solve the
γ -hierarchy of initial-boundary-value problems, automated and systematic bespoke
Maple procedures are necessarily implemented in order to obtain all closed-form
approximate solutions.

Using both the theoretical approximations of § 3 and corroborative numerical
simulations, inertial effects in the new model are investigated in § 4. First, the two-
timescale approximation contains terms that are unexpectedly singular (N.B. not
secular) at certain integer-valued Weber numbers when R =O(α). In identifying
the origin of such terms via wave-mode interactions, the discovery is made of an
interesting artefact of the two-timescale solution: as R → 0, certain source terms
switch singularly from particular integrals into secularity conditions at each order of γ .
This switching leads to a minute discrepancy, between two-timescale approximations
obtained from R ≡ 0 and R → 0, that decays exponentially with time. Second, the
destabilizing centrifugal effect on the fundamental mode (of the exterior MPP) is
quantified, leading to the discovery of a critical Reynolds number R0 =O(αγ 2)
above which inertia destabilizes the surface-tension-induced decay to the steady
state analysed in previous related studies. The inertial stability threshold set by R0

therefore precludes the attainment of the above-mentioned singular terms, so that the
asymptotic solution remains uniformly valid on physical grounds.

Inertial perturbations to the steady state are studied in § 5, with particular reference
to the closed-form exact results of recent inertia-free studies by Pukhnachov (2005a, b)
and Karabut (2007). It is discovered that the maximum-film-thickness location is
shifted downwards (i.e. in the direction of gravity) by surface tension and inertia,
and a formula for this location is obtained. As surface tension is increased to α � 1,
another critical Reynolds number, R∞ = O(α−1), is found, and new large-α asymptotic
formulae (with R = R∞) are shown to be in excellent agreement with recent theoretical
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results (with R =0), even when the expansion parameter γ assumes unexpectedly large
values of order O(1).

2. Mass-conserving evolution equation
The evolution of a two-dimensional viscous capillary film on the exterior of a

horizontal rotating cylinder is analysed in cylindrical-polar coordinates (r, θ) centred
on the axis of the cylinder. With minor alterations, the present analysis is also
applicable to the related problem on the interior of a rotating cylinder. The cylinder
has radius a and rotates about its horizontal axis with constant angular velocity
ω, and the fluid has dynamic viscosity, density and surface tension μ, ρ and σ ,
respectively; g is the acceleration due to gravity. Length, time, velocity, flux and
pressure are respectively scaled by a, ω−1, aω, a2ω and ρa2ω2, and there are four
non-dimensional parameters, three of which are the Reynolds, Galileo and Weber
numbers, respectively given by

R0 =
a2ωρ

μ
, G0 =

g

aω2
and W0 =

ρa3ω2

σ
. (2.1)

If the dimensional film thickness is h̃(θ, t) � a, the fourth non-dimensional parameter
is the ratio of the mean initial film thickness h̄ and the cylinder radius,

ε ≡ 1

2πa

∫ 2π

θ=0

h̃(θ, 0) dθ =
h̄

a
(2.2)

which, satisfying 0 <ε � 1, constitutes the expansion parameter in the subsequent
asymptotic analysis. Define dimensionless rescaled parameters by

λ
PUK

= ε2G0R0, χ
PUK

= ε3 R0

W0

and Φ
PUK

= ε2R0, (2.3)

and a dimensionless, rescaled film height H (θ, t) by

h̃(θ, t) = aεH (θ, t) (2.4)

so that, by (2.2) and (2.4), H (θ, 0) has unit mean in [0, 2π]. Pukhnachev (1977) derives
an asymptotic evolution equation for H (θ, t),

Ht +
{
H − 1

3
λ

PUK
H 3 cos θ + 1

3
χ

PUK
H 3(Hθ + Hθθθ )

}
θ

= 0, (2.5)

by postulating that, in the limit ε → 0, parameters λ
PUK

, χ
PUK

and Φ
PUK

approach
finite values, the last of which is chosen to be zero. As shown below, the alternative
rescaling of ε3R0 is required to incorporate leading inertial effects consistently in (2.5),
which is therefore automatically asymptotically correct – i.e. without imposing the
choice Φ

PUK
=0 – simply by virtue of the last scaling in (2.3). However, as shown

below, (2.5) does not conserve mass, but it can be interpreted to do so through a
simple perturbation in the definition of H .

If r , u, v and p are respectively the dimensionless radial coordinate, radial velocity,

tangential velocity and pressure, and if h = h̃/a is the order O(ε) dimensionless film
thickness, the Navier–Stokes equations are

ut + uur +
vuθ

r
− v2

r
= −pr +

1

R0

(
urr +

ur

r
+

uθθ

r2
− 2vθ

r2
− u

r2

)
− G0 sin θ, (2.6)
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vt + uvr +
vvθ

r
+

uv

r
= −pθ

r
+

1

R0

(
vrr +

vr

r
+

vθθ

r2
+

2uθ

r2
− v

r2

)
− G0 cos θ, (2.7)

(ru)r + vθ = 0, (2.8)

in the annulus 1 <r < 1+h, 0 � θ � 2π, for t � 0. The no-slip condition on the cylinder
at r = 1 is

u = 0, v = 1, (2.9)

and the kinematic, shear-stress and normal-stress conditions on the free surface at
r = 1 + h are respectively

ht +
v

r
hθ − u = 0, (2.10)(

1 − h2
θ

r2

)(
vr − v

r
+

uθ

r

)
+

2hθ

r

(
ur − u

r
− vθ

r

)
= 0, (2.11)

−p + 2
ur − (hθ/r

2)(rvr − v + uθ ) +
(
h2

θ/r
3
)
(u + vθ )

R0

(
1 +

(
h2

θ /r
2
)) =

κ

W0

, (2.12)

in which the free-surface curvature is

κ = − (1 + h)2 + 2h2
θ − (1 + h)hθθ(

(1 + h)2 + h2
θ

)3/2
. (2.13)

Using the algebraic manipulator Maple, a fully automated solution procedure has
been implemented, in terms of power series in ε, for the boundary-and-initial-value
problem (2.6)–(2.13). As the details are rather cumbersome, only a summary of
the solution strategy and key observations is presented. The thin-film scalings in
Pukhnachev (1977) are introduced for the 2π-periodic functions h, u, v and p,

r = 1 + εY, u = εU, v = V and p = P,

which supplement (2.4) and in which the functions U , V and P having O(1) moduli
are expanded as the series ⎧⎨

⎩
U

V

P

⎫⎬
⎭ =

N∑
k=0

εk

⎧⎨
⎩

U (k)

V (k)

P (k)

⎫⎬
⎭ (Y, θ, t),

for some preselected N . At each order O(εk), k = 0, . . . , N , V
(k)
YY is first isolated in (2.7)

and V (k) is determined via boundary conditions (2.9) and (2.11). With V (k) known, U (k)
Y

is then isolated in (2.8) and U (k) is determined via boundary condition (2.9). Using
U (k) and V (k), P

(k)
Y is finally isolated in (2.6) and determined via boundary condition

(2.12). The automation is swift: on a Dell laptop with a 2.4 GHz Pentium 4 processor
and 512Mb RAM running Maple 9.0 on Windows XP, the CPU times (in seconds)
taken to solve U (k), V (k) and P (k) for k = 0, . . . , N = 7 were 0.03, 0.05, 0.09, 0.19, 0.35,
1.06, 4.54 and 20.88, respectively. The flux is obtained from

Q =

∫ H

0

V (Y ) dY

in which, through (2.6) and (2.7), Ht and Htt occur at orders O(ε4) and O(ε6)
respectively. The kinematic free-surface condition (2.10) is now used to remove Ht

from Q – more precisely to telescope it iteratively beyond O(εN ) in Q – and then
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Htt is similarly telescoped further into Q using the temporal derivative of (2.10)
augmented by Ut (H, θ, t) and Vt (H, θ, t). For N = 7, the automated computation of
Q and telescoping process requires only a single iteration and takes a further 34.28 s,
yielding

Q = H + 1
2
εH 2 − 1

3
γ0ε

2H 3 cos θ

+ ε3
{

1
3
α0H

3(Hθ + Hθθθ ) + 1
3
R0H

3Hθ − γ0

[
1
3
H 3Hθ sin θ + 1

2
H 4 cos θ

]}
+ ε4

{
γ0

[
9
20

H 5 cos θ + 17
6
H 4Hθ sin θ − H 4Hθθ cos θ − 7

3
H 3H 2

θ cos θ
]

− α0

[
1
2
H 4(Hθ + Hθθθ ) + H 3HθHθθ

]
+ 1

2
R0H

4Hθ − 2
15

γ0R0H
5 sin θ

}
+ O(ε5) (2.14)

in which R0 is given by (2.1) and γ0 and α0 respectively by

γ0 =
aρg

ωμ
and α0 =

σ

aωμ
. (2.15)

An advantage of using the kinematic free-surface condition iteratively to telescope
temporal derivatives to higher orders of ε is the explicit determination of Q in terms
of H and its derivatives with respect to θ only, so that (2.14) can be used directly to
construct an evolution equation with a prespecified truncation error, here O(ε8) and
higher. The order O(εn) terms in (2.14) for n= 5, 6, 7 are explicitly known but too
cumbersome to present.

Differences in Q born of different non-dimensionalizations are now discussed,
present interest being focused on the potential promotion or demotion of inertial
terms in rescaled small-parameter expansions of Q. Distinguished by their parametric
factors in (2.14), we subsequently refer to (1/3)ε3R0H

3Hθ and (1/2)ε4R0H
4Hθ as

pure-inertial (PI) terms, and to −(2/15)ε4γ0R0H
5 sin θ as a gravitational-inertial (GI)

term. Benjamin et al. (1993) define α
BPT

= (ωμ/ρga)1/2 to be their small parameter.
Then α

BPT
= 1/

√
γ0 and B = α0/γ0 is the inverse Bond number, and the rescaling

H = α
BPT

H/ε transforms (2.14) into

Q
BPT

= H − 1
3
H

3
cos θ + α

BPT

{
1
2
H

2 − 1
2
H

4
cos θ − 1

3
H

3
Hθ sin θ+1

3
BH

3
(Hθ + Hθθθ )

}
+ α2

BPT

{
9
20

H
5
cos θ + 17

6
H

4
Hθ sin θ − H

4
Hθθ cos θ − 7

3
H

3
H

2

θ cos θ

− B
[

1
2
H

4
(Hθ + Hθθθ ) + H

3
HθHθθ

]
+ R0

[
2
15

H
6
Hθ cos2 θ − 2

15
H

5
sin θ − 4

315
H

7
sin 2θ

]}
+ O

(
α3

BPT

)
. (2.16)

The first line of (2.16) constitutes a slight modification of Benjamin et al. (1993, (30)).
This scaling binds leading-order gravitational effects to the leading-order viscous
effect, with hydrostatic and capillary effects appearing at first order and inertial
effects at second order.

A comparison of expansions (2.14) and (2.16) reveals that it is the inertial terms
that undergo the most pronounced scaling-dependent promotion and demotion,
as heralded by the factor H 3 in the first appearance of R0 in (2.14) but

H
5
, H

6
and H

7
in (2.16). Only one GI term, −(2/15)ε4γ0R0H

5 sin θ in Q and

−(2/15)α2
BPT

R0H
5
sin θ in Q

BPT
, is common to both expansions to the orders

presented. Inspection of higher-order terms not explicitly presented in (2.14) and
(2.16) reveals that the PI terms (1/3)ε3R0H

3Hθ and (1/2)ε4R0H
4Hθ in Q are
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respectively demoted to (1/3)α3
BPT

R0H
3
Hθ and (1/2)α4

BPT
R0H

4
Hθ in Q

BPT
, whereas the

GI terms (2/15)ε6γ 2
0 R0H

6Hθ cos2 θ and −(4/315)ε6γ 2
0 R0H

7 sin 2θ in Q are respectively

promoted to (2/15)α2
BPT

R0H
6
Hθ cos2 θ and −(4/315)α2

BPT
R0H

7
sin 2θ in Q

BPT
.

Benilov & O’Brien (2005) promote the GI terms in (2.16) to the same order as
hydrostatic and capillary terms by using the small parameter ε

BO
= α

BPT
that multiplies

the hydrostatic pressure to rescale inertial and capillary parameters as α
BO

= ε2
BO

R0

and β
BO

= ε
BO

B . Translated into the present notation, and with its sign reversed for
the exterior MPP, their film height (Benilov & O’Brien 2005, (2)) is transformed via

the (implicit) rescaling H + (1/2)εH 2 = ε
BO

Ĥ /ε. Presently solving this for H (Ĥ ) by
series reversion, (2.14) becomes

Q
BO

= Ĥ − 1
3
Ĥ 3 cos θ − 1

3
ε

BO
Ĥ 3Ĥθ sin θ + 1

3
β

BO
Ĥ 3(Ĥθ + Ĥθθθ )

+ α
BO

[
2
15

Ĥ 6Ĥθ cos2 θ − 2
15

Ĥ 5 sin θ − 4
315

Ĥ 7 sin 2θ
]

+ T
BO

, (2.17)

in which the truncation error T
BO

is to leading order a linear combination of five of
the six possible quadratic products (β2

BO
is absent) of ε

BO
, β

BO
and α

BO
. But for a slight

modification (2.17) without the term T
BO

is the flux implicit in Benilov & O’Brien
(2005, (3)). Because of the iterative telescoping of temporal derivatives used in deriving

Q, the 26 terms in T
BO

are known explicitly, one of them being (1/3)ε
BO

α
BO

Ĥ 3Ĥθ ,
which identifies with a demotion of the leading-order PI term (1/3)ε3R0H

3Hθ in Q.
Ashmore et al. (2003) consider the stationary interior-MPP problem using the filling

fraction A as the small parameter, with corresponding gravitational and capillary

parameters λ
AHS

=A/γ 2
0 and B = Aα0/γ0 respectively. The rescaling H = AH̃/ε

transforms the flux (2.14) into

Q
AHS

= H̃ − 1
3
λ

AHS
H̃ 3 cos θ + 1

3
λ

AHS
BH̃ 3(H̃θ + H̃θθθ ) + A

{
1
2
H̃ 2 − 1

2
λ

AHS
H̃ 4 cos θ

− 1
3
λ

AHS
H̃ 3H̃θ sin θ − 1

2
λ

AHS
BH̃ 4(H̃θ + H̃θθθ ) − λ

AHS
BH̃ 3H̃θ H̃θθ

}
+ A2λ

AHS
T

AHS
, (2.18)

which corresponds to Ashmore et al. (2003, (2.13)), with which (2.18) now has
more than the expected differences. In this case additional discrepancies at
order O(A) arise because Ashmore et al. (2003) approximate the exact curvature
(2.13) as a series expansion in A. The truncation error in (2.18), in which
T

AHS
=O(B, R0, λAHS

R0, λAHS
BR0), includes the leading GI terms of (2.16) and (2.17)

over two orders, O(A2λ
AHS

R0) and O(A2λ2
AHS

R0), and the leading PI term of (2.14) at

order O(A3R0). In contrast to Q
BPT

and Q
BO

, and in common with Q, the leading-order
gravitational term in Q

AHS
may be varied independently of the leading-order viscous

term.
The above comparisons clearly demonstrate that the relative asymptotic ordering

of PI and GI terms in previous related studies is markedly affected by the non-
dimensionalization used, and may accordingly influence conclusions. For example, for
the interior MPP, Noakes et al. (2006, p. 176) comment that their (centrifugal) PI
term stabilizes the fundamental mode, whereas the GI terms in Benilov & O’Brien
(2005) always cause instability. The contradiction is only apparent, and is explained
by noting that PI terms originate from inertial components of the radial Navier–
Stokes equation (2.6) whereas GI terms do so from the interaction between inertial
and gravitational components of the azimuthal Navier–Stokes equation (2.7). Under
the present scaling, PI and GI terms are respectively of first and second order, and
hence the asymptotic evolution equation now derived will contain only the former.
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The dimensionless equation of mass conservation obtained from (2.8) and (2.10) is

(1 + εH )Ht + Qθ = 0, (2.19)

the first term of which is the temporal derivative of the sum of the first two terms on
the right-hand side of (2.14), suggesting the introduction of a perturbed height

H(θ, t) =
H (θ, t) + (1/2)εH (θ, t)2

1 + (1/2)εH (θ, 0)
(2.20)

which has been normalized to have the initial condition H(θ, 0) = H (θ, 0). The
numerator of (2.20) translates to the exterior-MPP counterpart of Benilov & O’Brien
(2005, (2)) used in the derivation of Q

BO
in (2.17). To simplify the subsequent analysis,

attention is restricted to the uniform initial condition H (θ, 0) = 1, as detailed algebraic
digressions indicate that certain initial conditions may considerably complicate the
solution procedure of § 3 independently of the inertial effects with which this paper is
concerned. With H (θ, 0) = 1, inversion of (2.20) gives

H = H − 1
2
εH(H − 1) + 1

2
ε2H2(H − 1)

− 1
8
ε3H2(H − 1)(5H − 1) + 1

8
ε4H3(H − 1)(7H − 3) + O(ε5), (2.21)

which is substituted into a perturbed flux defined by Q = Q/(1 + (1/2)ε) to give

Q = H − 1
3
ε2γ0H3 cos θ

+ 1
3
ε3H3{α0(Hθ + Hθθθ ) − γ0(cos θ + Hθ sin θ) + R0Hθ} + O(ε4), (2.22)

in which terms of order O(εn) for n= 4, 5, 6, 7 are known but not presented.
Equations (2.19)–(2.22) yield the evolution equation for H as

Ht + Qθ = 0, (2.23)

which is mass-conserving to order O(ε7) whereas (2.5) is so only to order O(1).
Motivated by the leading-order appearances of gravitational, capillary and pure-

inertial terms in (2.14), introduce the scalings

γ = 1
3
ε2γ0, α = 1

3
ε3α0 and R = 1

3
ε3R0, (2.24)

in which: γ and α (cf. Hinch & Kelmanson 2003, (2.10)) are respectively renormalized
versions of λ

PUK
and χ

PUK
(cf. Pukhnachev 1977) in (2.3); R is an order of

magnitude smaller than the inertial coefficient Φ
PUK

in (2.3), and γ, α, R � 1 when
γ0, α0, R0 = O(1). Via the scalings (2.24), the normalized flux (2.22) becomes

Q = H − γ H3 cos θ + αH3(Hθ + Hθθθ ) + RH3Hθ + T(ε, γ, α, R), (2.25)

in which the truncation error is extremely complicated algebraically, but satisfies

T(ε, γ, α, R) = o(γ, α, R), ε → 0. (2.26)

This scaling therefore gives a (perturbed) flux Q containing PI terms promoted over
GI terms and, as per Pukhnachov’s equation (2.5), hydrostatic terms demoted from
the leading order. The evolution equation implicit in (2.23), (2.25) and (2.26) may be
validated against the generalized-scaling analysis of Noakes et al. (2006). Write (2.23),
(2.25) and (2.26) as

Ht + Hθ = g0γ + a0α + r0R + o(γ, α, R), ε → 0, (2.27)

in which

g0 = [H3 cos θ]θ , a0 = −[H3(Hθ + Hθθθ )]θ , r0 = −[H3Hθ ]θ . (2.28)
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Now consider the two-dimensional (exterior-MPP) form of (3.13) in Noakes et al.
(2006) which, in the present notation, becomes

(1 + εH )(Ht + Hθ ) −
[(

H 3 + 1
2
εH 4

)
P

†
θ

]
θ

= 0, (2.29)

in which the two-dimensional reduced pressure of Noakes et al. (2006, (3.14)) becomes

P † = γ (1 + εH ) sin θ − α(H + Hθθ ) − εβ†H (2.30)

where β† = ε2a2ωρ/(3μ). Thus, via (2.1) and (2.24), the last term in (2.30) is −RH .
Eliminating P † between (2.29) and (2.30) and then using (2.21) to express H in terms
of H and (2.28) to simplify notation, the evolution equation of Noakes et al. (2006)
becomes

Ht + Hθ = g0γ + a0α + r0R + 1
2
ε(Ht + Hθ )

+ ε(g1γ + a1α + r1R) + O(ε2γ, ε2α, ε2R), (2.31)

in which direct calculation yields

g1 = −
[
H3

(
Hθ sin θ + 3

2
cos θ

)]
θ

(2.32)

a1 =
[
H3 {2(1 − H)(Hθ + Hθθθ ) − 3HθHθθ}

]
θ

(2.33)

r1 = 2
[
H3(1 − H)Hθ

]
θ
, (2.34)

so that g0, a0, r0, g1, a1 and r1 are of order O(1) for the thin film under consideration.
Hence (2.31) can be solved asymptotically for Ht + Hθ to give

Ht + Hθ = g0γ + a0α + r0R

+ ε
(
γ

[
1
2
g0 + g1

]
+ α

[
1
2
a0 + a1

]
+ R

[
1
2
r0 + r1

])
+ O(ε2γ, ε2α, ε2R)

= g0γ + a0α + r0R + o(γ, α, R), ε → 0, (2.35)

which is (2.27). A similar argument is used in (A44)–(A45) in Benilov & O’Brien
(2005), in which a zeroth-order approximation for their ht + hθ is resubstituted into
the first-order terms and then asymptotic equivalence invoked. Thus the evolution
equation (2.27) for H is asymptotically consistent with the benchmark equation of
Noakes et al. (2006), in which PI terms dominate GI terms and hydrostatic effects
are absent at leading order. Ignoring the unspecified asymptotic errors in (2.27) or
(2.35), we subsequently consider the evolution equation

Ht +
{

H − γ H3 cos θ + αH3(Hθ + Hθθθ ) + RH3Hθ

}
θ

= 0. (2.36)

Note that if the sign of the inertial term in (2.36) is changed, along with both signs
in (2.20), the corresponding interior MPP can be similarly analysed. The automated
Maple derivation of (2.36) via substitution of (2.21) and (2.24) into (2.14) takes a
further 6.23 s, giving a total of approximately 1 min on the modest PC used.

By comparing (2.36) with (2.5), it is now seen that Pukhnachov’s equation is
therefore asymptotically consistent and mass preserving provided that: its H is
identified not with the film height but with the perturbed normalized film height H of
(2.20); the initial film is of uniform thickness, and the original Reynolds number R0 is
scaled with ε3 rather than ε2. Although the evolution equation (2.36) together with the
initial condition H(θ, 0) = 1 is analysed using two-timescale asymptotics in the next
section, a näıve-expansion solution in powers of ε of the evolution equation (2.23)
prior to the rescaling (2.24) is readily automated in Maple. Here we implement explicit
exact inversion (rather than Maple’s inherent pdsolve command) of the differential
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EG G O GW

f ≡ (ρσ 3/9gμ4)1/2 93.18 0.03048 110.6 4.958

Table 1. Fluid-specific factors f to be used in computing the rescaled Reynolds number R
for ethylene glycol (EG), glycerine (G), oil (O) and an 85 %–15% glycerine–water mixture
(GW). If γ0 = 10x , α0 = 10y and ε = 10−z, R in (2.40) is given by 10(x−3y−6z)/2f . In computations
in Hinch & Kelmanson (2003), x ≈ 1.0969, y = 1 and z ≈ 0.9470 give R ≈ 10−3.7925f so that
REG ≈ 0.01502, RG ≈ 4.914 × 10−6, RO ≈ 0.01783 and RGW ≈ 7.994 × 10−4. For these x, y and
z, γ ≈ 0.05319 and α ≈ 0.004807, and hence the positioning of R � 1 in the hierarchy (2.39) is
fluid dependent. Moreover, αγ 2 ≈ 1.340 × 10−5 and so the balance R = O(αγ 2) discussed after
(2.38) is physically possible. Tabulated values of f were computed using data (in SI units)
measured at 100 kPa and 288K, together with a value of g =9.81 m s−2.

operators arising at each level of the ε hierarchy. For N = 10, requiring 12.68 s, the
series solution for H contains, inter alia, the fundamental-mode terms

− 1
3
ε2γ0

{
1 + 1

3
ε3R0t + 1

18
ε6R2

0 t
2 + · · · − 7

2
ε7α0γ

2
0 t + · · ·

}
cos(θ − t) (2.37)

and the first-harmonic terms

1
6
ε4γ 2

0

{
1 + ε3(2R0 − 4α0)t + ε6

(
14
9
R2

0 − 20
3
R0α0 + 8α2

0

)
t2 + · · ·

}
cos 2(θ − t). (2.38)

The secularities in (2.37) suggest exponential growth of the fundamental mode, on the
timescale ε3R0t , that opposes the exponential decay on the slower timescale ε7α0γ

2
0 t

discovered by Hinch & Kelmanson (2003) in the case R0 = 0. Hence the balance
R0 = O(ε4α0γ

2
0 ), equivalently R = O(αγ 2), quantifies the destabilizing centrifugal effect

on the fundamental mode, thereby addressing the ‘further investigation’ proposed by
Noakes et al. (2006, p. 179). The secularities in (2.38) suggest that first and higher
harmonics may also remain undamped when R0 =O(α0), equivalently R = O(α),
because of the opposite signs of the coefficients in the implied exponential. The näıve
expansion for H suggests no leading-order changes to the O(ε4γ 2

0 ), equivalently
O(γ 2), inertia-free drift rate found in Hinch & Kelmanson (2003).

By (2.24), small parameters γ and α satisfy the hierarchy

γ 2 � α � γ � 1 (2.39)

when γ0, α0 � O(ε−2). By (2.15), γ0 and α0 link all three of the non-dimensional
parameters in (2.1), hence their specification fixes the Reynolds number which, by
(2.1), (2.15) and (2.24), has the rescaled form

R =

(
γ0ρσ 3ε6

9α3
0gμ4

)1/2

=

(
γρσ 3ε13

81α3gμ4

)1/2

. (2.40)

With the hierarchy (2.39), it is the case that O(α) � O(αγ 2) and hence, of the
balances discussed above, it is R =O(αγ 2) that governs the inertial destabilization of
surface-tensional decay. Values of R can be computed for a selection of fluids using
the information given in table 1, in whose caption an example reveals two noteworthy
points: first, the positioning of the small parameter R within the hierarchy (2.39) is
preordained by a particular fluid’s physical properties, and, second, the R = O(αγ 2)
balance required to negate surface-tension damping of the fundamental mode is
physically realizable in practice. Thus physically motivated, analysis of the inertial
destabilization of surface-tension decay is now undertaken.
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3. Two-timescale approximation of H(θ, t)

Hinch & Kelmanson (2003) derive an (N + 1)-term solution HN (θ, t) of (2.5), as
a series in γ , using two-timescale asymptotics employing fast and slow timescales
τ = t and T = γ 2t, respectively, the latter being discovered through numerical
integrations of (2.5) and physically explained via a complex double action of gravity
on free-surface harmonic modes. Below, hybrid strained-coordinate/two-timescale
asymptotics (Kevorkian & Cole 1996, ch. 4) are used to obtain an approximate
solution HN (θ, t) of (2.36) in which the fast timescale is strained in the form
τ = (1 +

∑
k∈� ωkγ

k)t wherein the ωk are to be determined. By so straining the fast
timescale to accommodate the cumulative effect of gravitational drift, the algebraic
simplification can be made of confining slow-timescale activity of the fundamental
mode entirely to decay. The slow timescale is again T = γ 2t , by which ω2k−1 = 0,
k ∈ �, so that ∂t =(1 +

∑
k∈� ω2kγ

2k)∂τ + γ 2∂T .
A solution of (2.36) is sought in the form

HN (θ, t) = 1 +

N∑
k=1

γ khk(θ, τ, T ), (3.1)

in which N is specified, the hk are 2π-periodic in θ , and the uniform initial profile
discussed immediately after (2.20) requires hk(θ, 0, 0) = 0, k = 1, . . . , N . When (3.1) is
substituted into (2.36), the partial differential equation for hk at each order O(γ k) is of
the form Lhk = rk(θ, τ, T , h1, . . . , hk−1), say, in which the linear differential operator
L is

L ≡ α∂4
θ + (α + R)∂2

θ + ∂θ + ∂τ , (3.2)

whose kernel contains the 2π-periodic functions Kmn(θ, τ, T ) given by

Kmn = (Amn(T )cnn + Bmn(T )snn) en2{R−(n2−1)α}τ , (3.3)

in which cmn = cos(mθ − nτ ), smn = sin(mθ − nτ ), and Amn and Bmn are arbitrary
functions of T . The form of the slow timescaling has ∂T hk first appearing in rk+2.
Equation (3.3) explicitly reveals the fundamental difference between the present case
and the inertia-free problem considered previously: when R > 0, the fundamental mode
(n= 1) can decay to a steady state if and only if the surface-tension-induced decay of
the slow-timescale functions A11(T ) and B11(T ) is sufficiently great to counteract the
exponential growth exp(Rτ ) on the fast timescale.

At each order O(γ k), k =1, . . . , N , the initial-value problem Lhk = rk , hk(θ, 0, 0) = 0,
can be integrated exactly and efficiently. Using the notation Cp

mn = cmne
pτ and

Sp
mn = smne

pτ , it is straightforward to show that

L−1Cp
mn =

ACp
mn + BSp

mn

A2 + B2
and L−1Sp

mn =
−BCp

mn + ASp
mn

A2 + B2
, (3.4)

in which A = αm4 − (α + R)m2 + p and B = m − n: the case A = B = 0 accounts for
the fast-timescale elements in Kmn in (3.3). Each right-hand side rk is first partitioned
into constituents, defined by different values of p, all of which contain R and some
of which also contain α (see § 4). Each such constituent is then swept systematically
to find the (m, n) distribution of its cmn and smn harmonics for m =1, . . . , N and
n= − N, . . . , N , the negative values of n admitting reflected wave modes moving
against the direction of rotation; this effectively defines a matrix of coefficients for
the inversions in (3.4). Complementary functions and particular integrals based upon
(3.3) and (3.4) can then be constructed and assembled to give hm. As per the analysis
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in § 2, the entire procedure has been implemented and fully automated in Maple.
The bespoke automated integration procedure is both faster than Maple’s inherent
pdsolve command, and it reveals the solution structure in a succinct and physically
interpretable form.

The equation at order O(γ ) is Lh1 = − s10, the only forcing term arising from the
steady state, with solution

h1(θ, τ, T ) =
c10 + Rs10

1 + R2
+ A11C

R
11 + B11S

R
11, (3.5)

whose components (the last two of which constitute K11) represent a combination
of a steady state and a fundamental mode modulated slowly by surface tension and
rapidly by inertia. The initial condition for h1 gives

A11(0) = − 1

1 + R2
and B11(0) = − R

1 + R2
. (3.6)

Solution of the O(γ ) problem requires 0.06s CPU. It is seen from (3.5) that a
stable solution requires the exponential fast-timescale growth terms CR

11 and SR
11 to be

dampened by the slow-timescale decay terms A11 and B11.
The equation at order O(γ 2) is Lh2 = r2, with

r2 =
3

(1 + R2)2
(2Rc20 − (1 − R2)s20)

+
3

1 + R2

{
(2RA11 + (1 − R2)B11)C

R
21 − ((1 − R2)A11 − 2RB11)S

R
21

}
+ 3R

{(
A2

11 − B2
11

)
C2R

22 + 2A11B11S
2R
22

}
, (3.7)

in which the contributions to the forcing term are from, in the order presented: the
steady state, interaction between the steady state and the fundamental mode, and
self-excitation of the fundamental mode. The solution of Lh2 = r2 is

h2(θ, τ, T ) =
3(λ20c20 − 2μ20s20)

2(1 + R2)2(1 + 4(R − 3α)2)

+
3
(
(λ21A11 + μ21B11)C

R
21 − (μ21A11 − λ21B11)S

R
21

)
(1 + R2)(1 + 9(R − 4α)2)

+
3

2(6α − R)

{(
A2

11 − B2
11

)
C2R

22 + 2A11B11S
2R
22

}
+ A22C

4(R−3α)
22 + B22S

4(R−3α)
22 , (3.8)

in which λ20 = 1 + 12Rα − 5R2, μ20 = 3α − 2R − 3R2α + R3, λ21 = 1 + 24Rα − 7R2 and
μ21 = 12α − 5R − 12R2α + 3R3. The first three components on the right-hand side of
h2 in (3.8) are particular integrals for the three components of r2 in (3.7), and the
fourth is K22, in the kernel of L. The initial condition for h2 gives

A22(0) =
3(R − 3α)(1 − 6(R − 3α)(R − 4α))

(R − 6α)(1 + 4(R − 3α)2)(1 + 9(R − 4α)2)
, (3.9)

B22(0) =
3(R − 3α)(5R − 18α)

(R − 6α)(1 + 4(R − 3α)2)(1 + 9(R − 4α)2)
. (3.10)

Solution of the O(γ 2) problem requires 1.17 s CPU. Note that slow-timescale functions
A11 and B11 introduced at order O(γ ) are still not determined, and hence neither is
h1. The double action of gravity defers this to the order O(γ 3) problem, in which



On inertial effects in the Moffatt–Pukhnachov coating-flow problem 339

suppression of secularity, in conjunction with (3.6), determines A11 and B11. By the
same process, h2 cannot be fully determined until suppression of secularities in the
order O(γ 4) problem, in conjunction with (3.9) and (3.10), determines A22 and B22.
Note also that the simplification invoked by Hinch & Kelmanson (2003) – effectively,
the discarding of all Knn terms with n> 1 – cannot be repeated because such terms do
not now become exponentially small when τ =O(1) due to the opposition of surface
tension by inertia. This augurs a significant increase in algebraic complexity of the
problems at subsequent orders of γ .

At order O(γ 3) the equation Lh3 = r3 has, after combining (i.e. reducing) r3 into
a linear combination of harmonics, 1526 terms comprising: 46 in the secular factor
of eRτ (from the fundamental mode K11); 200 in the non-secular factor of eRτ (from
the interaction between the fundamental mode and the steady state); 437 in the
non-secular factor of e2Rτ (from self-excitation of the fundamental mode ); 240 in the
non-secular factor of e3Rτ (from repeated self-excitation of the fundamental mode);
248 in the non-secular factor of e(4R−12α)τ (from the first harmonic K22); 288 in the
non-secular factor of e(5R−12α)τ (from the interaction between the fundamental mode
and the first harmonic) and 67 pure-trigonometric (from the steady state).

The solution h1 of the order O(γ ) problem is first completed by determining A11

and B11 from the 46 terms in the secular factor of eRτ , which yield two 23-term
coupled ordinary differential equations of the form

∂T A11 = δ3A11 − η3B11 and ∂T B11 = η3A11 + δ3B11, (3.11)

in which δ3 and η3 are known functions of R, α and ω2. The value of ω2 is not yet
determined uniquely; when expressed in the form

ω2 =
3(15R2 − 36Rα − 72α2 − 5)

2(1 + R2)(1 + 9(R − 4α)2)
+ ε0, (3.12)

in which ε0 is an arbitrary constant, the drift factor η3 vanishes when ε0 = 0. With ω2

thus defined, the decay factor δ3 is given by

δ3 = −9(4R3 − 15R2α − 4R + 9α)

(1 + R2)(1 + 9(R − 4α)2)
− Rε0. (3.13)

The value ε0 = 0 is chosen to confine drift of the fundamental mode (but not of the
higher harmonics) to the strained timescale τ : this is consistent with having used
the unstrained fast timescale τ = t , which at this order gives the first term on the
right-hand side of (3.12) uniquely as ω2. The small-R expansion of (3.12) is then

ω2 ≈ − 3(5 + 72α2)

2(1 + 144α2)
− 54α(11 + 288α2)

(1 + 144α2)2
R + O(R2),

in which the first term on the right-hand side is the value of ω2 found by Hinch &
Kelmanson (2003) in the case R = 0, and the second term shows that the counter-
rotational drift is increased in the presence of inertia. When ε0 = 0 the small-R
expansion of (3.13) is

δ3 ≈ − 81α

1 + 144α2
+

36(1 − 18α2)

(1 + 144α2)2
R + O(R2),

in which the first term on the right-hand side is the fundamental-mode slow-timescale
decay rate found by Hinch & Kelmanson (2003) in the case R = 0, and the second
term, positive because α � 1, quantifies the inertial (centrifugal) destabilization of
such decay.
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Using the initial conditions (3.6), the slow-timescale modulation functions for the
fundamental mode are now determined as

A11(T ) = −exp(δ3T )

1 + R2
and B11(T ) = −R exp(δ3T )

1 + R2
. (3.14)

With h1 fully determined and ω2 known, the automated procedure described above
is again used to determine particular integrals for the remaining 1480 non-secular
terms in r3. Finally, h3 is constructed from these particular integrals augmented by
K33 and K31, the latter of which is also in the kernel of L and whose presence is
required because the initial condition h3(θ, 0, 0) = 0 includes not only c30 and s30 but
also c10 and s10. By this addition, unique values are assigned to A31(0), B31(0), A33(0)
and B33(0). Algebraic details of h3 are cumbersome and therefore omitted. Solution
of the O(γ 3) problem requires 23.90 s CPU.

At this stage, A22 and B22 in h2 are still unknown, and h3 contains the six
unknown functions A22, B22, A31, B31, A33 and B33. The evolution equations for
A22 and B22 are determined from only a partial analysis of the order O(γ 4) equation
Lh4 = r4; specifically, by annihilating in r4 the coefficients of the secular terms C

4(R−3α)
22

and S
4(R−3α)
22 . It is computationally expensive, increasingly difficult to automate and

digressional to the goal of this paper, to complete both the order O(γ 4) and order
O(γ 5) problems to determine not only the evolution equations for A31, B31, A33 and
B33, but also the next coefficient ω4 in the strained timescale τ . It is feasible to do this
systematically in the case R = 0, and this has been done, using a pseudo-three-timescale
technique in Kelmanson (2009), which extends by orders of magnitude the duration
of uniform validity of the asymptotic expansions in Hinch & Kelmanson (2003).

The right-hand side of the equation Lh4 = r4 contains 34 terms in each of
the coefficients of the secular C

4(R−3α)
22 and S

4(R−3α)
22 . These yield coupled ordinary

differential equations of the form

∂T A22 = δ4A22 − η4B22 and ∂T B22 = η4A22 + δ4B22, (3.15)

in which δ4 and η4 are known functions of R and α. By contrast with (3.11), there is
no free parameter in (3.15) and so η4 cannot be annihilated. Hence the first harmonic
contains a component of drift on the slow timescale T over and above that included
in the strained timescale τ , and so it (and, presumably, higher harmonics) disperses
relative to the fundamental mode. Evolution equations (3.15) have solution

A22(T ) = (A22(0) cos η4T + B22(0) sin η4T ) exp(δ4T ) (3.16)

B22(T ) = (B22(0) cos η4T − A22(0) sin η4T ) exp(δ4T ) (3.17)

in which (3.9) and (3.10) give A22(0) and B22(0). The explicit forms of δ4 and η4 are
cumbersome: they are approximated by

δ4 ≈ −54α(23 − 360α2)

1 + 3600α2
+ 114R + O(Rα2, R2),

η4 ≈ − 1944α(37 + 144α2)

(1 + 144α2)(1 + 3600α2)
+ 13 284Rα + O(Rα3, R2).

Completing the order O(γ 2) problem (i.e. fully determining h2) by partial solution
of the O(γ 4) problem requires 3.34 s CPU. Finally, the three-term two-timescale
approximation of the perturbed film height is constructed using (3.1) and, to accelerate

the convergence of the sum of these three terms, the [1/1]-Padé approximant H̃2 of
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Figure 1. (a) Continuous lines are the time evolution of H2(0, t) and (b) its [1/1]-Padé

approximant H̃2(0, t), as defined in (3.18), for 0 � t � 10. The small circles are numerical data
extrapolated from fourth-order finite-difference results computed using 50 and 100 equally
spaced nodes around the cylinder. Parameters γ ≈ 0.05319 and α ≈ 0.004807 (as used in table 1
and Hinch & Kelmanson 2003) are used throughout, and there are three curves, visually
indistinguishable at this scale in this time interval, corresponding to R =0, 5.0 × 10−4 and
1.0 × 10−3. The [1/1]-Padé approximant improves the asymptotic solution near the maxima
but reduces accuracy near the minima, where the approximant is ill-conditioned because
γ, |h1|, |h2| � 1.

H2 is also considered, i.e.

H2 = 1 + γ h1 + γ 2h2 and H̃2 =
h1 + γ

(
h2

1 − h2

)
h1 − γ h2

. (3.18)

Figures 1 and 2 show comparisons between H2 and H̃2 for specific parameter values;
they also compare both solutions with extrapolated fourth-order finite-difference
results. Figure 3 shows the increasing drift between H2 and numerical data at large
times.

An alternative two-timescale approach to the above is to subtract out both the
steady-state component Hs(θ) of the solution (computed in § 5 to a high order of γ )
and gravitationally induced drift to leave evolution equations governing only decay
or growth on the slow timescale. Since (3.12) gives

ω2 = − 15
2
γ 2 + O(αR, γ 4),

leading-order drift is removed via the coordinate transformation

ψ = θ − (1 − (15/2)γ 2)t,

using which H(θ, t) is expanded as

H(θ, t) = Hs(θ) +
∑

n

γ nhn(θ, ψ, T ),

as in Hinch et al. (2004, § 3). With α = α2γ
2, R = R2γ

2 and the slow timescale T = γ 2t ,
this leads to h1(θ, ψ, T ) = f (ψ, T ) and the initial condition f (ψ, 0) = − cosψ , where
f (ψ, T ), the order O(γ ) component of H, satisfies the linear evolution equation
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Figure 2. Caption as per figure 1, but for 90 � t � 100. By this time, the three curves
corresponding to R = 0, 5.0 × 10−4 and 1.0 × 10−3 have separated because of the cumulative
larger-time inertial destabilization of surface-tension-induced decay: the outermost curve, with
the smallest minima and the largest maxima, corresponds to the largest value of R. Because
ω4 is not determined in the strained timescale τ , there is little point in detailed comparisons
between theoretical and numerical results beyond this time, and figure 3 shows an order O(1)
drift between theory and computation when t = O(103).
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Figure 3. Comparison between H2(0, t) (lines) and numerical data (circles) for (a) t = O(102)
and (b) t = O(103), for the parameters in the caption of figure 1 and R = 0 (most rapidly
decaying), R = 5.0 × 10−4 and R = 1.0 × 10−3 (least rapidly decaying). At the later time, the
inertial destabilization of surface-tension decay is clearly evidenced (the vertical scales on both
plots are identical) and the value of R = 1.0 × 10−3 appears to be close to the critical value
that exactly balances the decaying action of surface tension. An order O(1) drift is visible at
the later time between the theoretical and numerical results because of the absence of the ω4

term in the strained timescale τ .
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(a secularity condition at order O(γ 3))(
∂T + α2∂

4
ψ + (α2 + R2)∂

2
ψ

)
f = 0,

in which the operator should be compared with that in (3.2). With α = α3γ
3, R = R3γ

3

and the slow timescale T = γ 3t associated with shock formation, f (ψ, T ) satisfies the
nonlinear evolution equation (a secularity condition at order O(γ 4))(

∂T − 30f ∂ψ + α3∂
4
ψ + (α3 + R3)∂

2
ψ

)
f = 0,

which can be solved by suitably amending the analysis in Hinch et al. (2004, § § 4
and 5). A related (component) evolution equation in Noakes et al. (2006, (3.55))
includes a quintic term that translates to −∂ψ0

((3/2)γ 2H 5
0 ) in the present scaling, in

which H0 is the leading-order component of H and ψ0 = θ −t = ψ+(15/2)γ 2t . By (2.4)
in Hinch et al. (2004), the argument of −∂ψ0

is precisely the first perturbation in the
action variable of the Hamiltonian for H derived in the limit α, R → 0 which, by (2.6)
and (2.8) in Hinch et al. (2004), gives rise to a leading-order gravitational drift rate of
−(15/2)γ 2 relative to the uniformly changing coordinate ψ0. That is, ψ0 and ψ respec-
tively admit and remove drift in their corresponding evolution equations, and the
quintic term in the former has been implicitly accommodated in the latter simply by
straining the fast timescale; both approaches are therefore asymptotically consistent.

4. Inertial effects
Inspection of (3.8) reveals that H2 contains terms whose denominator may vanish

when R is certain integer multiple of α; by (2.15) and (2.24), this is equivalent to the
Weber number W0 assuming these integer values. This unexpected potential singularity
can be addressed by a combination of mathematical and physical arguments.

The fundamental mode K11 in h1 at order O(γ ) gives rise to two related types
of contributions of the order O(γ k) problem for all k > 1. First, via the nonlinear
occurrence of h1 in rk , K11 produces terms of the form P(k)

C CkR
kk and P(k)

S SkR
kk , in which

P(k)
C and P(k)

S are homogeneous polynomials of degree k in A11 and B11. For example,
(3.8) reveals that C2R

22 and S2R
22 have potentially vanishing denominators in h2, as do

C3R
33 and S3R

33 in h3. Equation (3.4) reveals that CkR
kk and SkR

kk are in the kernel of L when
αk4 − (α +R)k2 +kR = 0, i.e. R = k(k +1)α, k = 2, . . . , N . Hence R = 6α, 12α, 20α, . . .

are critical values that potentially give singular (N.B. not secular) solutions, explaining
the appearance of

C2R
22

R − 6α
and

S2R
22

R − 6α
in h2,

C3R
33

R − 12α
and

S3R
33

R − 12α
in h3, etc.

Second, K11 from h1 combines with K22 from h2 to produce terms of the form C5R−12α
11 ,

S5R−12α
11 , C5R−12α

33 , S5R−12α
33 in h3. In this case (3.4) reveals that C

p
kk and S

p
kk are in the

kernel of L when αk4 − (α +R)k2 +p = 0 and p is the sum of the exponential indices
n2

1(R − (n2
1 − 1)α) and n2

2(R − (n2
2 − 1)α) for two distinct integers n1 and n2 with

1 � k � n1 +n2. The values n1 = 1 (from K11) and n2 = 2 (from K22) give p =5R −12α,
from which (3.4) gives the critical values

R =
(k − 2)(k + 2)(k2 + 3)

k2 − 5
α, (4.1)

i.e. R =3α, 15α for k =1, 3. This explains the appearance of

C5R−12α
11

R − 3α
,

S5R−12α
11

R − 3α
,

C5R−12α
33

R − 15α
and

S5R−12α
33

R − 15α
in h3, etc. (4.2)
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Centrifugal destabilization of decay and the prospect of potential singularity are not
the only new features introduced by inertia. Counter-intuitively, it transpires that the
two-timescale solution obtained when R =0 is not algebraically equivalent to that
obtained by letting R → 0 in § 3. However, the difference between the two is relatively
minute numerically, as illustrated in figure 4. This difference is an artefact of the
two-timescale method used, and is now explained. Define L0 and hk0

by setting R = 0
in L and hk , respectively, and let hk be the counterpart of hk0

obtained from a two-
timescale analysis in which R is a priori fixed at zero. Let H2 be the corresponding
counterpart of the H20

obtained by setting R = 0 in (3.18). Then

L0c11 = 0 and L0s11 = 0 (4.3)

and the fundamental-mode terms in h1 satisfy

LCR
11 = 0 and LSR

11 = 0,

of which the limit as R → 0 is compatible with (4.3); thus h10
= h1. Ignoring for the

moment the K22 term in (3.8), it is also apparently the case that h20
= h2. However,

h3 contains a contribution

−3

4

(
A2

11 + B2
11

)(
A11C

3R
11 + B11S

3R
11

)
that corresponds to repeated self-excitation of the fundamental mode, and in which

LC3R
11 = O(R) and LS3R

11 = O(R). (4.4)

Although (4.4) is compatible with (4.3) as R → 0, neither C3R
11 nor S3R

11 are in the kernel
of L whereas CR

11 and SR
11 are, as c11 and s11 are in the kernel of L0. Thus although

C3R
11 → c11 and CR

11 → c11 as R → 0, only the second of these contributes to the secularity
condition for the evolution equation for A11 whereas the first contributes to the initial
condition for A31. A parallel comment applies when replacing ‘C’ by ‘S’ and ‘A’ by
‘B ’. Specifically, those terms φk in rk (k � 3) for which Lφk =O(Rm) (m > 0) switch
singularly from the integrable components into the secularity conditions as R → 0, so
that hk0

�= hk for k � 2. Equivalently, such terms switch singularly from fast-timescale
integrations to slow-timescale evolution equations as R → 0. For example, the value
of A31(0) in this case differs by −(3/4)CR

11 from the value of A31(0) when R = 0 and,
of the order O(γ 4) problem, the A22 and B22 determined in (3.16) and (3.17) differ
considerably from their counterparts when R = 0; in the latter case, Kelmanson (2009)
shows that A22 and B22 contain terms of the form exp(exp(−λT )) for some λ> 0.

Figure 4 demonstrates the small numerical discrepancy between H20
and H2 due

to the difference between h20
and h2. The relative error between H20

and H2 for these
particular parameters never exceeds 4.0 × 10−4 %, and it vanishes as the exponential
factors – i.e. precisely those terms obtained from the secularity conditions affected
by the above-mentioned switching – decay to zero at large times. The discrepancy
arises because H20

and H2 are generalized asymptotic expansions that do not satisfy
a uniqueness condition (Murdock 1991, p. 230). Finally, the H2(θ, τ, T ) calculated
here agrees exactly with the H2(θ, t, T ) obtained by Hinch & Kelmanson (2003) from
more complicated evolution equations incorporating the treatment of drift on the
slow timescale.

The above discussion of potential singularities can now be resumed in the physical
context of inertial destabilization of surface-tension-induced decay. The products
A11C

R
11 and B11S

R
11 in h1 reveal that the fundamental mode will not decay when there
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Figure 4. Time evolution of the small numerical discrepancy H20
− H2 at the station θ = 0

for the parameters γ ≈ 0.05319 and α ≈ 0.004807 used in Hinch & Kelmanson (2003) and in
figures 1–3. The discrepancy tends to zero as K22 → 0.

is a balance δ3T + Rτ = 0, equivalently

δ3γ
2 + (1 + ω2γ

2)R = 0; (4.5)

this same balance arises in h2 from the second and third terms on the right-hand side
of (3.8). Using (3.12) and (3.13), balance (4.5) yields a quintic equation in the critical
Reynolds number R = R0(γ, α) with numerical solution R0 ≈ 1.0164 × 10−3 when the
parameters given in the caption of table 1 are used. The linearization of (4.5) gives
the approximation

R0 ≈ 162αγ 2

2 + 288α2 + 57γ 2 − 216α2γ 2
, (4.6)

which gives R0 ≈ 1.0161 × 10−3, so that (4.6) has a relative error of only 3.14 × 10−2 %.
The leading-order term in the series approximation

R̃0 ≈ 81αγ 2

1 + 144α2
+

243(72α2 − 19)αγ 4

2(1 + 144α2)2
(4.7)

of the linearization (4.6) comes as no surprise; the merit of (4.7) is that it confirms
the expectation that the timescale γ 4t is the next to be used in a three-timescale
asymptotic procedure; this information is used in Kelmanson (2009) to pursue a
pseudo-three-timescale approximation that increases the duration of uniform validity
of the approximate solutions of Hinch & Kelmanson (2003). From the higher
harmonics at order O(γ k), k > 1, the balance equation is similarly

δkγ
2 + k2(1 + ω2γ

2)(R − (k2 − 1)α) = 0

which, because δk = O(α) for all k > 1, has the solution R = O(α). Thus the potential
singularity discussed above can never occur in practice because exponentially growing
solutions already occur at the much lower threshold R = O(αγ 2) in (4.7). Hence
H2 evaluated with physically realistic parameters is always uniformly valid until
τ = O(γ −2), equivalently t =O(γ −2).

With reference to the physical plausibility of the present theory alluded to in the
caption of table 1, it is indeed possible to achieve the critical Reynolds number (4.6)
in practice. For example, a thin film of glycerine on a roller of diameter 1.01 cm
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Figure 5. Comparison for 0 � t � 100 of H2(0, t) (continuous lines) and the (a) maxima and
(b) minima of the numerical data (small circles, computed by quadratic Lagrange interpolation)
for γ ≈ 0.05319 and α ≈ 0.004807 and R = 9.0 × 10−4, 1.2 × 10−3 and 1.5 × 10−3; the largest
value of R corresponds to the highest maxima and the lowest minima. In each group of three
data, the left-most maxima and minima are at their true abscissae and the others have been
displaced to the right by �t = 2.0 and �t = 4.0 for clarity. The vertical scales are 14 (a) and 20
(b) times larger than those in figures 1–3. The small discrepancy (� 0.75 % of the amplitude
in the two figures) between asymptotics and numerics is due to the absence in H2 of terms
γ nhn for n � 3.

at 100 kPa and 288 K, with the parameters γ0 = 10, α0 = 2 and ε = 0.0872 (giving
γ =0.02535 and α = 4.42 × 10−4), reaches the critical value R ≈ 2.259 × 10−5 at a
rotation rate of ω = 42.56 r.p.m. Moreover, many polymers and molten plastics, with
approximately the same density as water and half its surface tension, can be diluted to
give a wide range of dynamic viscosities (Brandrup et al. 2003), yielding a vast range
of industrially relevant parameters accommodated by the present theory. Further
discussion of physically realizable parameters may be found in Hinch et al. (2004,
§ 7), which concludes that the asymptotic predictions of several features of this exterior
MPP are observable in practice.

For the remainder of this section, however, the parameters used in Hinch &
Kelmanson (2003) and figures 1–4 will continue to be used, together with
O(10−4) < R < O(10−3), in order to analyse harmonic decay discernible over the
uniformly valid timescale of order O(γ −2). The critical value R0 predicted by (4.6)
cannot be expected to agree exactly with that obtained from numerical integrations
of (2.5) because it is based upon a balance (4.5) of only the order O(γ ) fundamental-
mode contribution, h1, to H2; the neglected contributions from hk for k > 1 will slightly
change the value of R0. Moreover, the absence of γ 3h3 and higher-order terms in H2

will preclude excellent agreement between H2 and the numerically obtained H. These
effects are illustrated in figure 5, which compares the two-timescale solution (3.18)
with numerical integrations of (2.5) for parameters γ ≈ 0.05319 and α ≈ 0.004807 and
R =9.0 × 10−4, 1.2 × 10−3 and 1.5 × 10−3, the second of which is close to the critical
value of R0 in the numerical data; in relative terms, the numerical and theoretical
amplitudes differ by only 0.75 %. Figure 6 shows a comparison between the two-
timescale and numerical solutions for the (numerical) critical value R = 1.2 × 10−3,
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Figure 6. Large-time comparison of H2(0, t) (continuous line) and Richardson-extrapolated
numerical data (circles) for R = 1.2 × 10−3, close to the critical value of R dictated by the
numerics. No perceptible changes in maxima or minima occur on this scale.

in which, on the presented scale, there is no perceptible change in amplitude of
oscillation over the time interval 250 � t � 300.

5. Steady-state solution
The steady exterior MPP originally considered in Moffatt (1977) and Pukhnachev

(1977) has been revisited by, e.g. Hansen & Kelmanson (1994), Kelmanson (1995),
Wilson, Hunt & Duffy (2002), Hinch & Kelmanson (2003), Evans, Schwarz & Roy
(2004), Hinch et al. (2004), Pukhnachov (2005a,b) and Karabut (2007), the last two
of which place particular emphasis on the existence and uniqueness of asymptotic
solutions with R = 0 in small- and large-α limits. Because of the equivalent scalings and
directly comparable asymptotics in Pukhnachev (1977), Pukhnachov (2005a,b) and
Karabut (2007), inertial augmentation of these particular studies is now considered
and a number of comparisons are made.

With ∂t ≡ 0, one integration of (2.36) with respect to θ yields the third-order
ordinary differential equation

H − γ H3 cos θ + αH3(Hθ + Hθθθ ) + RH3Hθ = Q, (5.1)

in which Q is defined immediately after (2.21). A solution of (5.1) is sought in the
form

H∗
N (θ, t) = 1 +

N∑
k=1

γ kh∗
k(θ) and QN = 1 +

N∑
k=1

γ kqk, (5.2)

in which N is specified and the h∗
k are 2π-periodic in θ . When (5.2) is substituted

into (5.1), the ordinary differential equation for h∗
k at each order O(γ k) is of the form

L∗h
∗
k = rk(θ, h∗

1, . . . , h
∗
k−1), say, in which the linear differential operator L∗ is

L∗ ≡ α∂3
θ + (α + R)∂θ + I,

where I is the identity operator and the invertibility of L∗ as R → 0 is
addressed formally in Pukhnachov (2005b). At each order O(γ k), k =1, . . . , N , the
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boundary-value problem L∗h
∗
k = rk , h∗

k(θ) = h∗
k(θ + 2π), is integrated exactly and

efficiently using a similar approach to that outlined in § 3. If now cm = cosmθ and
sm = sin mθ , it is straightforward to show that

L−1
∗ cm =

cm + Ksm

1 + K2
and L−1

∗ sm =
−Kcm + sm

1 + K2
(5.3)

in which K = m(R − (m2 − 1)α). At each order O(γ k), a sweeping procedure similar
to that employed in the time-dependent case is used to construct particular integrals
efficiently: CPU times required for fully automated solution of the order O(γ k)
problem are 0.03, 0.06, 0.21, 1.28, 3.36, 19.57 and 119.6 s for k =1, . . . , 7. Clearly, h∗

1

and h∗
2 are, respectively, given by the time-independent components of h1 and h2 in

(3.5) and (3.8), but h∗
k for k = 3, . . . , 7 (too cumbersome to present) could not similarly

have been obtained as h∗
k = limt → ∞ hk without an astronomical increase in cost and

effort. The first three terms in the perturbed flux are

QN = 1 − 3

2(1 + R2)
γ 2

+
24R4 − 144R3α +

(
216α2 + 273

)
R2 − 792Rα + 216α2 − 75

8 (1 + R2)3(1 + 4(R − 3α)2)
γ 4. (5.4)

Comparison with previous work on the steady state is facilitated by using the rescaled
dependent variable and parameters

η =
H
Q , β = γ Q2, δ = αQ3 and λ = RQ3, (5.5)

to transform (5.1) into an ordinary differential equation for η(θ),

η − 1

η3
= β cos θ − δ(ηθ + ηθθθ ) − ληθ , (5.6)

in which η(θ) = η(θ + 2π). When δ = λ=0 (5.6) is an algebraic equation for which
Moffatt (1977) finds a solution η that is symmetric about, and achieves a maximum
value at, θ = 0. A series solution of ∂θH∗

N = 0 reveals that surface tension and inertia
displace the maximum to

θ ≈ γ tan−1 R +
9(R − 2α)γ 2

(1 + R2)(1 + 4(R − 3α)2)
+ O(γ 3), (5.7)

in which it should be remembered from § 4 that a steady state requires R < R0, where
R0 is given by (4.6). When R = ζR0 for 0 <ζ < 1 (5.7) gives

θ0 ≈ − 18αγ

1 + 36α2
+ O(ζαγ 2), (5.8)

and so the maximum is displaced downwards for all 0 < R < R0 and α > 0; this is
confirmed by numerical integrations of (5.1). Figure 7 shows curves in (β, η) space
computed using (5.1), (5.4) and (5.5), with η calculated at both θ = 0 and θ = θ0, for
a range of values of α. The largest value of γ used in parameterizing all curves in
figure 7 is dictated by Moffatt’s maximum-load criterion when α = 0, in which case the
critical value of γ ≈ 0.16665470713578132360 has been obtained exactly in terms of
elliptic integrals by Metcalfe (2005, private communication). As a curiosity, it reveals
that the maximum load differs from π

√
2 by only 3.6 × 10−3 %. As N is increased,

the small-α solutions converge on the solution curve of Moffatt (1977).
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Figure 7. Variations in ηN (θ ) and βN for (a) N = 4 and (b) N = 6 at θ = 0 (solid lines) and
θ = θ0 (circles). From left to right along the β-axis, pairs of curves correspond to α = 0.001, 0.1,
0.3 and 10.0 in H∗

N , parameterized by γ taking maximum values of γ of 0.17, 0.20, 0.23 and
0.26, respectively. Solid lines and circles have R = 0 and R = R0, respectively. The left-most
dashed curve corresponds to the cubic equation βη3 + η − 1 = 0 for the α =0 solution at θ = 0
obtained by Moffatt (1977); the black disc at (4/27, 3/2) on this curve corresponds to the
maximum-load solution.

Let η0 = η(0), in which R = 0, and let ηR0
= η(θ0), in which R = ζR0 (0 < ζ < 1),

and define �η ≡ ηR0
− η0. The two notable features of figure 7 are that �η > 0

and that, apparently, �η → 0 as α → 0 and α → ∞. From (5.1), (5.5) and (5.8), it is
straightforward to show that

�η =
162α2γ 3

(1 + 36α2)2
+ O(ζα2γ 4),

which not only explains all features illustrated in figure 7, but also reveals that �η is
maximized when α = 1/6; note that �η is visible in figure 7 for those curves whose α

is close to this value. At this value of α, θ0 attains its minimum of −(3/2)γ , thereafter
increasing back to 0 as α → ∞, which limit is now discussed.

Via numerical integral-equation solutions of the full Stokes-flow problem, Hansen &
Kelmanson (1994) discovered that the free-surface elevation is only weakly dependent
on α as it varies over two decades in magnitude. Hinch & Kelmanson (2003) similarly
show that their asymptotic solution (corresponding to) HN (θ, t) is insensitive to large
variations in α, even those violating the hierarchy (2.39). By both studies, the limit
α � 1, equivalently δ � 1, is physically plausible. In this limit, the leading-order small-

γ approximation to R0 given by (4.7), R̃0 ≈ 81αγ 2/(1 + 144α2), assumes a maximum
value of 27γ 2/(8 + 111γ 2) (with a maximum of 9/37 ≈ 0.243) at α =1/12, decreasing
thereafter according to the new critical value

R̃∞ =
9γ 2

4(4 − 3γ 2)α
+ O(α−2), 0 < γ � 1, α → ∞. (5.9)

The implication of (5.9) is that a stable solution requires the reduction of inertia
as surface tension increases without limit: this opposes the intuitive notion that
increasing surface tension should stabilize increasing inertial effects. However (5.9) is
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both corroborated by numerical integration of the time-dependent evolution equation
(2.36) and consistent with the following argument.

As δ → ∞ (5.6) can have 2π-periodic solutions via two possible dominant balances.
The first balance, λ� δ, yields solutions of the form η = a + b cos θ + c sin θ for
some constants {a, b, c}; by (5.5) and the fact that Q =1 + O(γ 2), this balance
is compatible with (5.9). The second balance, λ≈ δ, yields solutions of the form
η = a+b cos nθ+c sin nθ provided that 1+λ/δ = n2 for some n ∈ �. This is equivalently
λ=(n2 − 1)δ or, by (5.5),

R = (n2 − 1)α, n ∈ �, α → ∞. (5.10)

Since (5.10) violates (5.9), the second balance is rejected, and this moreover ensures
that the potentially singular terms in (4.2) remain bounded in the time-dependent
solution. An independent mathematical observation yet to emerge further corroborates
rejection of (5.10).

Substituting R = ζR∞, 0 <ζ < 1, into η∞ ≡ H∗
6/Q∗

6 and letting α → ∞ gives, after
expanding in powers of γ � 1,

η∞ = 1 + 3
2
γ 2 + 3

2
γ 4 +

(
γ + 3

2
γ 3 + 9

8
γ 5

)
cos θ

+ α−1
{((

9
16

ζ − 3
4

)
γ 3 +

(
81
64

ζ − 61
32

)
γ 5

)
sin θ

−
(

1
4
γ 2 + 11

24
γ 4

)
sin 2θ +

(
1
16

γ 3 + 17
128

γ 5
)
sin 3θ

− 1
48

γ 4 sin 4θ + 1
128

γ 5 sin 5θ
}

+ O(α−1γ 6, α−2), (5.11)

which is presented in detail to highlight several features. First, inertial terms,
signified by ζ , exert minimal influence in this limit. Second, the first harmonic
sin 2θ unexpectedly has a much larger coefficient than the fundamental mode sin θ ,
whose coefficient is of the same order as the second harmonic sin 3θ . Third, in accord
with the bounds in Pukhnachov (2005a), the constant term is greater than unity, the
coefficient of cos θ is positive, and the coefficient of sin θ is always negative (here,
because 0 <ζ < 1).

Equation (5.11) could in theory alternatively be obtained by a perturbation of the
analysis in Pukhnachov (2005a, b) and Karabut (2007), in which

η∞ = s + q cos θ − r sin θ, δ → ∞, (5.12)

where s > 1 and q, r � 0 (see above). Since by (5.12) s is the mean value of η∞ in
0 � θ � 2π, and since it is now known from (5.8) that the maximum value of η returns
to θ = 0 as δ → ∞, it is also the case that the mean value of η returns to θ = π/2, hence
s ≡ η∞(π/2) in (5.12). In Pukhnachov (2005a) (5.12) is inserted into (5.6), with λ=0,
and both sides multiplied by the three basis functions {1, cos θ, sin θ} and integrated
from θ = 0 to θ = 2π via residue theory to yield (after division by π throughout) three
nonlinear equations in s, q and r , which can be expressed in the form

s(3s − 2T) = T, (5.13)

q(3s − 2T) = (β + λr)T5/2, (5.14)

r(3s − 2T) = −λqT5/2, (5.15)

in which T = s2 − q2 − r2. When λ= 0, (5.13)–(5.15) admit a semi-explicit solution:
first, r = 0 from (5.15), whence (5.13) gives q = q(s) explicitly, then (5.14) yields the
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Figure 8. Large-α variations in sN = η∞N
(π/2) and βN when R =R∞, (a) N = 4 and (b) N = 6.

H∗
N , parameterized by 0 � γ � 0.75, is shown for α = 10 (dashed line) and α = 100 (solid line).

The small circles describe the sextic curve (5.16) of Pukhnachov (2005a), on which the black

disc at the critical point ((1/24)(173/2 − 107/3)1/2, (1 +
√

17)/4) signifies the point below which
exist thin-film solutions of the type presently studied, and above which large surface tension
stabilizes static pendant drops. The present theory deviates notably from the theoretical curve,
particularly as N is increased, when larger values of γ are used. As α → ∞, γ ≈ 0.4 at the
critical point.

following sextic equation,

27β2s6 − 8s3 + 6s + 2 = 0, (5.16)

which has to be solved implicitly for s either asymptotically in the small-β limit, as
in Pukhnachov (2005a), or numerically for larger values, as in Karabut (2007). For
sufficiently small β there are two real values of s, one of which corresponds to the
thin film analysed in § § 3 and 4. The other corresponds to a large pendant drop. Note
here that, if the alternative η∞ = a +b cos nθ + c sin nθ (n> 1) associated with (5.10) is
used, the right-hand sides of both (5.14) and (5.15) vanish for all λ, b and c, thereby
making the solution independent of β and λ. This is the final reason for rejecting
(5.10).

By (5.9), when λ> 0 it is given by the rescaling (5.5) as

λ =
9β2Q6

4(4Q4 − 3β2)δ
� 1,

in which case it may be possible to use the exact solution at leading-order to
solve (5.13)–(5.15) using large-δ asymptotics. However, this is eschewed since an
asymptotically correct solution (5.11) has been obtained explicitly, and this solution
has already revealed that the contribution from the inertial perturbation is negligible
in this limit. Figure 8 shows a comparison in the (β, s) plane between s computed
from (5.11), for large α, and that predicted by (5.16), for α → ∞: the most striking
feature is that (5.11), derived from the thin-film approximation, appears to predict
accurate values of s beyond the critical value of β , well into the pendant-drop régime,
in which γ becomes order O(1). However, this implies that only H∗

N (π/2) is accurately



352 M. A. Kelmanson

estimated for γ =O(1), and further calculations reveal that H∗
N (θ) in this régime is

not uniformly well represented in 0 � θ � 2π.

In conclusion, inertia fundamentally changes the nature of the exterior MPP because
without it the steady state is reached for all γ � 1 and, in practice, several decades
of α. Once inertia is introduced, certain {γ, α, R} balances preclude the existence
of a steady state even though a steady-state analysis does not reveal this. Indeed,
the steady-state profile is known to be insensitive to variations in R, yet the critical
Reynolds number R0 (and, by association, R∞) through which it can be reached
is bounded with increasing severity as surface tension is increased. Accordingly, it
remains an open and interesting question as to whether or not such bounds can be
determined directly from an analysis of the steady-state problem, without having to
negotiate the more difficult and indirect path of a multiple-timescale analysis of the
full evolutionary problem.

It is also interesting to speculate whether or not the R = O(αγ 2) balance discovered
in the evolutionary problem corresponds to the thin-film MPP whilst the R = O(α)
balance of (5.10) – which does arise naturally in the steady-state analysis – corresponds
only to the pendant-drop MPP. In that case, the problem of the potential singularities
of § 3 may be resurrected in a time-dependent thick-film solution of the exterior
MPP.
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